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This contribution presents sediment classification results derived from different sources of data col-

lected at the Dordtse Kil river, the Netherlands. The first source is a multi-beam echo-sounder

(MBES). The second source is measurements taken with a gamma-ray scintillation detector, i.e.,

the Multi-Element Detection System for Underwater Sediment Activity (Medusa), towed over the

sediments and measuring sediment natural radioactivity. Two analysis methods are employed for

sediment classification based on the MBES data. The first is a Bayesian estimation method that

uses the average backscatter data per beam and, therefore, is independent of the quality of the

MBES calibration. The second is a model-based method that matches the measured backscatter

curves to theoretical curves, predicted by a physics-based model. Medusa provides estimates for

the concentrations of potassium, uranium, thorium, and cesium, known to be indicative for sedi-

ment properties, viz. mean grain size, silt content, and the presence of organic matter. In addition, a

hydrophone attached to the Medusa system provides information regarding the sediment roughness.

This paper presents an inter-comparison between the sediment classification results using the

above-mentioned methods. It is shown that although originating from completely different sources,

the MBES and Medusa provide similar information, revealing the same sediment distribution.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4812858]
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I. INTRODUCTION

Reliable information about the seafloor or riverbed sedi-

ment composition is of high interest for a large number of

applications such as marine geology, marine biology, off-

shore construction projects, and cable and pipeline route

planning. Traditionally, obtaining information about the

sediment distribution in an area requires an extensive set of

grab samples of the sediments and subsequent laboratory

analysis, which can be costly and time consuming.

Alternatively, acoustic remote sensing techniques can be

used for classifying the sediments. Since single- and multi-

beam echo-sounders (SBES, MBES) are already in common

use for depth measurements, an attractive approach is to use

the signals measured by these systems also for sediment

classification purposes. Sediment classification potential

using the MBES and SBES systems has proven to be

high.1–7

In general, sediment classification methods using SBES

and MBES can be divided into phenomenological (or empir-

ical) and model-based (or physical) methods. In the phenom-

enological methods, features that are indicative for sediment

type (e.g., backscatter strength or features derived from the

bathymetric measurements) are used for classification. These

methods discriminate the sediments as belonging to different

acoustic classes, each with its own acoustic features. These

acoustic classes represent the different sediment types that

are present in the survey area. However, independent infor-

mation, e.g., from grab samples taken in the area, is usually

needed to assign sediment type, such as mud, sand or gravel,

or sediment parameters, such as mean grain size, to the

acoustic classes.6–9 On the contrary, the model-based
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methods10–13 determine the sediment type by maximizing

the match between modeled and measured signals or signal

features, where sediment type, or parameters indicative for

sediment type, are input into the model. In principle, no in-

dependent information is required for model-based methods,

since they provide the sediment type, or properties indicative

for sediment type, instead of acoustic classes.

This paper examines two methods for riverbed sediment

classification using the MBES. First, a statistical method is

applied that utilizes the backscatter strength measurements

of an MBES. It uses the backscatter data at a certain angle to

obtain the number of sediment classes and to discriminate

between them by applying the Bayes decision rule to multi-

ple hypotheses.14,15 Although this method can be considered

as model-based, employing a model for the backscatter his-

togram, it classifies the sediments as a number of acoustic

classes. Second, a method is employed that matches back-

scatter versus grazing angle as measured by the MBES to

model predictions, thereby providing sediment properties.

However, not only acoustic characteristics are indicative

for the sediment type, also natural radioactivity levels differ

for different sediment types and can as such be used to dis-

criminate between sediments. In this paper, radioactivity lev-

els taken with the Multi-Element Detection System for

Underwater Sediment Activity (Medusa),16,17 which takes

measurements with a gamma-ray scintillation detector, are

considered. The system measures gamma-rays being emitted

from very low concentrations of a number of radionuclides

in the sediment, viz. 137Cs, 40K, and radionuclides from the

decay series of 238U and 232Th. It is towed over the sediment

bed behind the vessel. Due to the attenuation of gamma radi-

ation in the sediment, the measured concentrations are char-

acteristic for the top 30 to 50 cm of the sediment. In addition

to the radionuclide concentration measurements, Medusa

also takes measurements with a hydrophone towed over the

sediment. These resulting noise levels can be used to deter-

mine whether or not the system is in contact with the sedi-

ment, but are also indicative for the sediment roughness. The

measurements taken with the Medusa system and the corre-

sponding data analysis are presented.

The aim of the research presented in this paper is two-

fold. (1) In general, the MBES sediment classification meth-

ods that classify sediments as a series of acoustic classes are

relatively easy to implement and require limited computa-

tional efforts. This holds for the phenomenological

approaches, but also for the Bayesian method of Ref. 14.

The drawback of these methods is that it is not always

straightforward to assign sediment type or sediment parame-

ters to the different acoustic classes. Still, this knowledge is

considered of high importance for many applications.

Therefore, in this paper, the results obtained by applying a

model-based method are compared to those obtained with

the method of Ref. 14 to investigate the relation between

acoustic classes and sediment properties. The results illus-

trate that although the mean grain size is the most important

parameter, the correlation coefficient between mean grain

size and acoustic classes is limited, impeding a direct conver-

sion of acoustic class to mean grain size. (2) Classification

methods based on MBES data can discriminate only

sediments that show acoustically distinct behavior. In this

contribution, the acoustic classification results are compared

with results of the completely independent Medusa method.

The aim is to investigate if there is increased classification

potential by using the data of these two independent data

sources. The results show that the Medusa measurements

and MBES measurements reveal a similar distribution of

the different sediment types, thus providing confidence in

the reliability of both independent methods. The low correla-

tion between the acoustic classification results (classes and

sediment parameters obtained from the model-based

method) and concentration of 137Cs indicates that comple-

mentary information can be derived from this radionuclide

which is known to be a proxy for the fraction of organic

matter.

This paper is organized as follows. In Sec. II, details

about the experiment are given. Section III provides a brief

description of the acoustic classification methods and the

Medusa method. The classification results of each of the

methods are presented in Sec. IV. Section V gives a compar-

ison between the methods and discusses their similarities

and differences. Finally, the main conclusions of the paper

are summarized in Sec. VI.

II. A DESCRIPTION OF THE MEASUREMENTS TAKEN
IN THE DORDTSE KIL AREA

The Dordtse Kil is a river in The Netherlands (South

Holland) and is an important link and transport axis. The

water depths in the Dordtse Kil as acquired by the MBES are

presented in Fig. 1.

The river area was surveyed in October 2009 over a

length of �10 km and its almost full width of 260 m, using

the EM3002D Kongsberg dual head MBES. The total num-

ber of beams is 320 (160 per head). The operation frequency

was 300 kHz, the pulse length was 150 ls, and the maximum

ping rate was 40 Hz. The beam width was 1.5� � 1.5�. All

beams were electronically stabilized for pitch and roll. For

each beam and each ping a single backscatter value is given.

This value is the result of first applying a moving average

over the time series of amplitude values and then selecting

the maximum average level of each beam.18

During the survey, measurements were taken with the

Medusa system measuring the sediment natural radioactiv-

ity. This system is towed behind the vessel. For these meas-

urements, contact between the sensor and the sediment is

essential. To validate if indeed the sensor was located on the

sediment, it is equipped also with a hydrophone. High noise

levels indicate good contact between the sensor and the sedi-

ment, whereas low noise indicates that the sensor is floating

in the water.

In addition, bottom grab samples were collected along

the river. For each bottom grab sample the grain size distri-

bution was determined. These results are shown in Fig. 2(a),

illustrating unimodal behavior for all grab samples. The

grab samples indicate mainly fine-grained sediments with

mean grain sizes Mz ranging from �0.15 to 5 in u units,

with Mz¼�log2(d) and d the mean grain size in mm, see

Fig. 2(b).
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III. SEDIMENT CLASSIFICATION METHODS

A. The Bayesian classification method using MBES
backscatter data

In Ref. 14 a method is presented for sediment classifica-

tion using MBES backscatter measurements. The method

carries out the classification per angle, which makes it insen-

sitive to variations in sediment type along the swath and to

imperfect sonar calibration. It fits a number of Gaussian

probability density functions (PDFs) to the histogram of the

backscatter strength (BS) data at a given angle, i.e.,

BS � fBSðBSÞ ¼
Xr

i¼1

ciNðBS; li; r
2
i Þ; (1)

where li and r2
i are the mean and variance of the ith

Gaussian distribution N, respectively, and ci is the contribu-

tion of the individual Gaussian functions to the total PDF.

fBS is the fitted histogram. The number of PDFs is increased

until the chi-square distributed test-statistic of the residuals

becomes less than a critical value. Based on the resulting r
Gaussian PDFs, the Bayes decision rule is applied to deter-

mine the r regions of backscatter values corresponding to the

r acoustic classes.

The method is based on the assumption that the back-

scatter values for a single sediment type follow a Gaussian

distribution for a sufficiently large number of scatter pixels

in the beam footprint. For shallow river areas, Gaussianity of

the distribution is ensured by averaging the measured back-

scatter values over surface patches, consisting of a small

number of beams in the across-track direction and a few

pings in the along-track direction.15 Bottom slopes are

accounted for according to the method presented in Ref. 15.

B. A model-based approach for sediment
classification

Whereas the Bayesian method makes use of the backscat-

ter values per angle, alternatively use can be made of the com-

plete backscatter curve, i.e., the backscatter as a function of

angle. Models exist that predict these backscatter curves as a

function of sediment properties and frequency. By searching

for those sediment properties that result in an optimal agree-

ment between modeled and measured backscatter curve, the

sediments can be classified. In this case, the classification

results consist of real sediment properties instead of acoustic

classes. For the work presented in this paper, the model

described in Ref. 19 is employed for predicting the back-

scatter curve. We hereby assume that the model, although

developed for frequencies between 10 and 100 kHz, is still

applicable for the current frequency of 300 kHz.

The total backscatter strength is expressed as a combina-

tion of the interface roughness scattering and volume

scattering

FIG. 1. (Color online) The bathymetry

of the Dordtse Kil superimposed upon

a view of The Netherlands.
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BSðhÞ ¼ 10 log10

�
rrðhÞ þ rvðhÞ

�
; (2)

with rr and rv the backscattering cross sections due to the

interface roughness and volume scattering, respectively. rr

is derived by an appropriate interpolation between three

approximations:19

(1) the Kirchhoff approximation valid for fine to slightly

coarse sediments and at grazing angles close to nadir;

(2) the composite roughness approximation appropriate for

all other angles;

(3) for rough bottoms (e.g., gravel and rock) use is made of

an empirical expression.

All three contributions are a function of the sediment

roughness spectrum. An isotropic relief spectrum is assumed

as W2ðKÞ ¼ ðh0KÞ�cw2, with K the bottom relief wave num-

ber, h0 a reference length (1 cm), w2 the spectral strength

and c the spectral exponent. Additionally, rr is determined

by the sediment density, attenuation coefficient, and sound

speed.

rv is modeled based on the following expression for the

sediment volume backscattering cross section

rp� ¼
5dr2j1� R2ðhÞjsin2h

�ln10jPðhÞj2Im
�
PðhÞ

� ; (3)

where � is the ratio of sediment to water sound speed, d the

ratio of imaginary to real wavenumber in the sediment, R
the amplitude reflection coefficient, h the grazing angle, r2

the ratio of sediment volume scattering cross section to

attenuation coefficient, and PðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � cos2h
p

, with

j ¼ ð1þ idÞ=�. In addition to h, R is also a function of the

sediment parameters �, d and q. The latter is the ratio of

sediment to water mass density. rv is determined from rpv

accounting for shadowing and bottom slopes according to

Ref. 19.

Empirical expressions exist that relate r2, w2, q, �, and

d to mean grain size Mz.
19 However, values encountered for

w2 and r2 are known to often deviate significantly from the

values obtained by the empirical expressions.

As a first step in assessing the agreement between model

predictions and measured backscatter curves, backscatter

curves measured close to locations of the grab samples are

considered. The model is run for mean grain size values as

determined from the grab samples, and values for all other

model input parameters are derived from the empirical

expressions relating them to the mean grain size. Differences

(not shown here) between the resulting model predictions

and measurements can be attributed to:

(1) sediment types that change along the swaths;

(2) values for the r2, w2, q, �, and d that deviate from those

obtained from the empirical expressions;

(3) imperfect calibration of the MBES backscatter

measurements.

To solve for these effects the following procedure is

applied. An objective function is defined that quantifies the

difference between the modeled and measured backscatter

strength:

f ðxÞ ¼
X

h

jbme
i ðhÞ � bmo

i ðh; xÞj; (4)

where bme
i and bmo

i are the measured and modeled backscat-

ter strength for the ith grab, respectively. The use of Eq. (4),

providing a measure for the absolute discrepancies between

the measured and modeled backscatter curves based on the

FIG. 2. (a) Grab sample grain size dis-

tribution; (b) grab sample mean grain

sizes.
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L1 norm, is motivated due to its robustness property com-

pared to the ordinary least-squares (L2) norm.20 In general,

r2 and w2 are known to show the largest deviations from the

empirical predictions and, therefore, these parameters are

considered as unknowns, contained in vector x. An estimate

for the mean grain size is available from the grab samples,

but still this parameter is allowed to vary slightly.

Consequently, x contains three unknowns, i.e., r2, Mz, and

w2. For minimizing Eq. (4), use is made of the differential

evolution method as described in Refs. 21 and 22.

Due to the imperfect calibration of the MBES and the

noise of the measurements, the objective function will not

become zero. The average curve of the differences (between

measured and modeled curves) for all grab samples can be

considered as the calibration curve. However, as mentioned

in item 1 above, measurements can also be affected by varia-

tions in sediment types along the swath. Accounting for

these measurements will result in differences between mod-

eled and measured backscatter curves that differ significantly

from the average, i.e., the calibration curve.

Therefore, an iterative procedure is followed to establish

the final calibration curve. In each iteration the measure-

ments are corrected using the calibration curve of the previ-

ous iteration. The measurement with maximum discrepancy

with the mean curve is masked as an outlier. A new calibra-

tion curve is then determined, based on the remaining meas-

urements, as the sum of the old curve and a correction to this

curve. After removing more and more outliers, at some itera-

tion the discrepancies become negligible and no further cor-

rections on the calibration curve are required.

The final calibration curve is then applied to all meas-

ured backscatter curves, allowing for determination of the

three parameters Mz, w2, and r2 over the entire area.

C. Medusa method

The Medusa system takes measurements with

scintillator-based gamma-ray detectors, towed over the sedi-

ment. These measurements allow for: (a) measurement of

natural background radiation, and (b) absolute measurement

of radionuclide concentrations in the sediment through

deconvolution of the measured signal’s spectrum.23 The

deconvolution focuses on estimating concentrations of the

radionuclides 238U, 232Th, 40K, and 137Cs, since these are

known to be indicative for the sediment properties: silt con-

tent, organic matter content and mean grain size.

1. Measuring silt content

The 238U uranium occurs naturally in trace amounts in

sediments by its incorporation in silt, sand and in some

heavy minerals. In the Netherlands, typical concentrations in

silt are higher than in sand. The 232Th thorium isotope is also

present in sediments in approximately similar concentrations

in silt and sand.16 This makes uranium and thorium suited

proxies for mapping silt and sand ratio’s in the sediment.

The correlation between uranium, thorium and silt content

varies on the scale of a sedimentary basin. Grab sample

investigations have shown that these correlations are similar

for a delta system as large as the Netherlands.17

2. Measuring organic matter content

There is a distinct difference between the natural radio-

nuclides (40K, 238U, 232Th) and 137Cs in the way they are dis-

tributed in sediments. The natural radionuclides will at least

initially be a more or less integral part of the minerals com-

prising the sediment while 137Cs is a later surface addition

that has been distributed in the environment by atmospheric

testing of nuclear weapons in the 1960s and by the

Chernobyl accident. The 137Cs from Chernobyl has been

preferentially deposited along a 150 km broad strip in north-

west–southeast direction passing over the center of the

Netherlands. The initially mobile 137Cs is absorbed by silt

and organic matter.17 This makes 137Cs a proxy for the or-

ganic matter content of the sediments. The correlation

between 137Cs and organic matter depends strongly on the

trends in deposition of 137Cs during the Chernobyl fallout.

3. Measuring grain size

Coarse-grained sediments consist of a mixture of quartz

and potassium feldspar. In the process of weathering, feld-

spars tend to be reduced in size during abrasion, while quartz

tends to be fragmented and destroyed.24 This process will

cause an increased concentration of feldspar in finer sedi-

ments and, consequently, a correlation between the concen-

tration of feldspar and grain size. The Potassium feldspar

minerals contain 40K. Hence, the 40K concentration can be

used as grain size indicator. The exact relation between the
40K concentration and mean grain size depends on the

location.

The concentration of radioactive nuclides in a specific

type of sediment is called the radiometric fingerprint of that

sediment. To derive a fingerprint for the sediments in a cer-

tain area use is made of grab samples taken in the area.

These grab samples are analyzed both with respect to their

sediment properties and the radionuclide concentrations.

Based on the resulting relations between the sediment prop-

erties and radionuclide concentrations, the radioactive emis-

sions measured by Medusa over the area can be converted to

maps of the sediment properties.

In addition to the radiometric measurements, the

Medusa system is also equipped with a hydrophone. This

hydrophone is towed over the sediment surface with the pri-

mary purpose to check whether the Medusa system touches

the sediment, resulting in high noise levels, or is floating

freely in the water, corresponding to much lower measured

noise levels. From experience, it is found that these hydro-

phone measurements can also be used to assess sediment

roughness and the presence of features, such as shells, on the

sediment.

IV. CLASSIFICATION RESULTS

A. Applying the Bayesian method for classifying
the Dordtse Kil sediments

Surface patches were created by averaging over approx-

imately eight beams and five pings. The average distance

between two consecutive beams is 15 cm and between two

pings is 25 cm, and consequently each surface patch is
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approximately of size 120 cm � 125 cm. After applying cor-

rections for the bottom slope, the average backscatter

strength was determined for each of the patches. The

assumption of a Gaussian distribution for the backscatter

PDFs was tested for areas with a single sediment type and

was found to be valid.

From the test statistic, it is observed that the optimal

value for the number of classes amounts to five, as illustrated

in the left frame of Fig. 3, since more classes do not result in

a significantly better agreement between model and meas-

urements. The obtained model contains sufficient detail for

describing the measurements. The right frame shows the his-

togram and the Gaussian fit for the averaged backscatter val-

ues at the grazing angle of 30� for the left transducer. A

similar approach, fitting the histogram with a number of

Gaussians, is taken for all other angles, providing for each

angle the range of backscatter values corresponding to each

of the classes. However, since the discriminative perform-

ance is best for the most grazing angles, �30� in this case,

due to their large beam footprint, the number of classes as

derived for this angle, i.e., five, is used for the fitting proce-

dure for the other angles. The classification map of the area

obtained by accounting for the full range of usable angles

(26�–70� grazing angles) is presented in Fig. 4.

B. Model-based results

The strategy explained in Sec. III B is now applied to

the MBES data acquired in the Dordtse Kil. For all MBES

tracks that were sailed over the 38 grab sample positions,

mean backscatter curves are obtained over a few consecutive

pings. This resulted in 73 combinations of grab samples and

mean backscatter curves, as grab sample locations were

crossed multiple times while taken the MBES measure-

ments. These curves and the Mz values of the corresponding

grab samples are used to derive the calibration curve. The

results are illustrated in Fig. 5. The bottom sub-frame at the

left shows the (minimized) differences between modeled and

observed backscatter curves when accounting for all grab

samples. In an ideal case the differences are identical and

hence represent the final calibration curve. However, due to

variations in sediment type along the swathes and measure-

ment noise, an ideal curve can never be obtained. Therefore

the median curve of the differences is considered to be a first

estimate for the calibration curve (thick black line in the left

bottom frame of Fig. 5). Due to the robustness of the L1

norm minimization, the results presented are not affected by

possible outliers. Still, the quality of the estimated calibra-

tion curve can be improved by removing some of the out-

liers. Therefore, the iterative approach of Sec. III B is

applied. The approach was stopped after nine iterations after

FIG. 3. (Color online) Normalized chi-square distributed test statistic versus number of classes (left frame). The right frame presents the histograms of the

measured BS data, i.e., number of measurements nj as a function of BS, over the entire area (bars), the five Gaussians (solid lines), and its best fit (dashed line)

at a grazing angle of 30� (right frame).

FIG. 4. (Color online) Classification of the Dordtse Kil river obtained by

applying the Bayesian acoustic classification method.
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which the L1 norm has decreased from over 80 dB to �5 dB.

Additional iterations did not result in a further decrease. It

was found that for three grab samples, with mean grain sizes

of 1.3, 1.5, and 5.0 u, all combinations of these grab samples

and backscatter curves were identified as outlier. This can be

caused by errors in the measurements, for example due to

uncertainties in the exact grab sample locations or backscat-

ter curves that are affected by variations of sediment type

along the swath, but can also be due to the backscatter model

output not being representative for the sediment at the loca-

tions of the grab samples.

The results from the iterative approach are presented in

the right frame of Fig. 5.

In the next step, the calibration curve is used to correct

all measured backscatter curves, obtained by averaging over

a few consecutive pings. These are then fed into the optimi-

zation process where a search is performed to determine

values for r2, Mz, and w2 that provide a maximum agreement

between modeled and measured backscatter curve from Eq.

(4). The search bounds were selected as �1 � Mz � 9,

5� 10�5 � w2 � 2� 10�2, and 5� 10�5 � r2 � 5� 10�3.

Figure 6 shows two typical examples where this inversion

has been applied. The modeled curves fit the measured

curves quite well indicating a reliable optimization method

and processing strategy.

Empirical relations between Mz, w2, and r2 are provided

in Ref. 19. For �1 � Mz < 5; the relation between Mz and

w2 is

w2 ¼ 0:00207h2 with h¼ 2:03846� 0:26923Mz

1þ 0:076923Mz
: (5)

For 5 � Mz � 9 the interface roughness parameter is

w2 ¼ 0:00207h2, where h ¼ 0:5. With regard to r2, Ref. 19

FIG. 5. Measured backscatter as a function of grazing angle h at grab sample positions (top sub-frames), corresponding modeled backscatter versus h (middle

sub-frames) and difference between modeled and measured backscatter versus h (bottom sub-frame). The left frames show the result at the first iteration, with

all grab samples accounted for. The thick black line in the left bottom sub-frame is the mean of the differences between modeled and measured backscatter,

representing the initial calibration curve. The right frames show the result at the final iteration. The measurements (top sub-frame) have been corrected using

the calibration curve corresponding to the ninth iteration. The thick black line in the right bottom sub-frame indicates the corrections that would be applied in

the next iteration. Colors indicate mean grain sizes in phi unit.

FIG. 6. (Color online) Two examples of the optimization problem where the three parameters Mz, w2, and r2 are searched for. In each frame the top sub-frame

is the calibration curve (thick dashed line) and the observed backscatter curve (thin solid line). The bottom sub-frame is the corrected (thick solid line) and

modeled (thick dashed-dotted line) backscatter curve. Indicated in the plots are the estimated parameters for each inversion.
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indicates a value of r2 ¼ 0:002 for �1 � Mz < 5:5 and

r2 ¼ 0:001 for 5:5 � Mz < 9, respectively.

Figure 7 presents both the estimates for w2 and r2 ver-

sus Mz as obtained from the inversions and predicted from

the empirical expressions. It can be seen that, in general,

the w2 values obtained from the inversions are a factor of 2

higher than those predicted by the empirical model. A

reverse situation holds for r2, where values of r2 deter-

mined from the inversions are a factor 2 lower that those

predicted by the empirical expressions for �1 � Mz < 5:5.

However, the estimates for r2 show a large spread, indicat-

ing limited sensitivity of the problem to this parameter.

This is at least partly due to the high frequencies consid-

ered. Another observation is that a discontinuity exists in

the behavior of the estimates for r2 at Mz ¼ 5:3. At

Mz ¼ 5:3, the empirical relations expressing �, i.e., the ratio

of sediment to water sound speed, and q, which is the ratio

of sediment to water mass density, as a function of Mz,

change. This might indicate that these relations require cor-

rections when used for the frequency of 300 kHz as consid-

ered here.

Finally, Fig. 8 presents the estimated values for Mz, w2,

and r2 as a function of position, where for illustrative pur-

poses logarithm scales are used to present w2 and r2. The

three maps clearly show areas differencing in sediment

types. In general, the three parameters reveal similar spatial

patterns. The Mz values indicate that the softest sediment

belongs to the southern part of the Dordtse Kil river.

Values for the inverted parameters are found to be at the

search bounds for certain areas in the southern part. These

results are not included in Fig. 8 as the inversion is consid-

ered not successful. Since these results are found in distinct

regions, i.e., the gaps in the Fig. 8 maps as indicated by

arrows, we hypothesize that for these regions the backscat-

ter model output is not representative for the sediments of

those areas.

FIG. 7. Estimated (dots) w2 versus Mz (top) and r2 versus Mz (bottom). The

two frames also show respectively the values of w2 and r2 predicted by em-

pirical models (squares), their moving averages (smoothed), and third-order

polynomial best fit. In each subplot colors indicate the third estimated pa-

rameter, i.e., r2 (top) and w2 (bottom).

FIG. 8. (Color online) Maps of inverted mean grain size Mz (left frame), spectral strength w2 (middle frame), and volume scattering parameter r2 (right

frame). Arrows indicate the regions for which the inversions converged to values for Mz, w2, or r2 that are at the bound of the search regions.
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C. Medusa results

The total activity of the nuclides was determined by

spectrum deconvolution on the measured signal.23 The activ-

ity concentrations in the grab samples were then determined

by the measured activity divided by the mass of the grab

sample and the dry matter percentage. The dry matter per-

centage was determined by the moisture loss in 6 h at a tem-

perature of 130 �C. The silt fraction and organic matter

content as determined from the grab samples were compared

to the concentrations of 232Th, 40K, 238U, and 137Cs. It was

found that the 232Th and 40K concentrations show positive

correlation with the silt fraction. No significant correlation

was found with 238U. Furthermore, a significant correlation

exists between 137Cs and the fraction of organic matter in

the grab samples. Both are illustrated in Fig. 9. The resulting

maps for the silt fraction, as derived from the 232Th and 40K

concentrations, and organic matter (from 137Cs concentra-

tions) are presented in Fig. 11 (right and center frames).

Since the 40K concentrations were found to show the

strongest correlation with the mean grain size (80%), for the

current study this parameter was finally used as a predictor

of the grain size, d50, denoting the grain size at which 50%

of the sediments in the grab sample are smaller. This strong

correlation is illustrated in Fig. 10.

The following relation between 40K concentration K and

d50 was established by linear regression

d50 ¼ �0:54K þ 425:5; (6)

with a coefficient of determination (R2) of 0.8. The grab

samples indicated as gray dots in Fig. 10 were not accounted

for in deriving the above relation as they contain some peat,

shells, or wood that were removed when determining the ra-

dionuclide concentrations, but were accounted for in the

mean grain size determination.

By using Eq. (6), a mean grain size map of the full area

was derived based on the 40K concentrations that were meas-

ured during the survey, the results of which are presented in

Fig. 11 (left frame). Note that since the grab sample posi-

tions are not coincident with the Medusa tracks, the range of

mean grain sizes encountered in the grab samples differs

from the range derived with the Medusa system towed over

the sediment. Especially the grab samples corresponding to

the smallest mean grain sizes were taken at locations where

no measurements were taken with the towed Medusa sensor.

All plots contained in Fig. 11 have been obtained by Kriging

interpolation25 of the data as acquired along the tracks.

The results of the measurements as taken by the Medusa

hydrophone that is towed over the sediment surface, are pre-

sented in Fig. 12. Their primary use is to indicate whether

the Medusa system touches the sediment, or floats freely in

the water. However, these measurements are also indicative

of the roughness of the sediment, where high noise is associ-

ated with rough boundaries and low noise is associated with

smooth boundaries. Since the hydrophone is not calibrated,

the measured noise intensities can only be used in a relative

manner to assess variations in roughness over an area.

V. COMPARISON AND DISCUSSION

In Fig. 12 an overview of the results of applying the

methods for sediment classification described in the previous

sections is presented, partly repeating the plots presented in

Sec. IV. To allow for comparison, this figure presents only

those results that are directly related to the sediment mean

FIG. 9. 40K and 232Th versus silt fraction and 137Cs versus the fraction of organic matter. The grab samples with low correlation are indicated with gray dots.

FIG. 10. 40K concentration versus d50 for the grab samples taken in the area.

The numbers indicate numbers of the grab samples. The grab samples with

low correlation are indicated with gray dots.
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grain size. Therefore, the estimates of silt fraction and or-

ganic matter are not included. To ease the comparison, simi-

lar colormaps are used for all five maps, where blue

corresponds to the finer sediment and red to the coarsest

sediment. It should be noted that the Medusa measurements

were taken only along six lines in the middle of the river

with an average distance of 40 m between lines; no measure-

ments are taken at the border of the river, resulting in a low

spatial resolution compared to the MBES results. (Note that

for the unimodal sediment grain size distribution

encountered (Fig. 2), differences between Mz based on d50

[obtained from the Medusa measurements through Eq. (6)]

and Mz based on d [grab samples and model-based method)

are negligible (<0.3 u)].

Despite the differences in the range of mean grain size

values as obtained for the different methods, with, for exam-

ple, the model-based results showing an overestimation of

Mz compared to the grab samples, we do observe a similar

spatial pattern in the sediment distribution as revealed by all

methods. Grain sizes are decreasing towards the southern

FIG. 11. (Color online) Maps of the d50 (left) values (in u units), organic matter (middle), and silt fraction (right) in Dordtse Kil using the Medusa method.

FIG. 12. Classification maps of

Dordtse Kil river using different meth-

ods; acoustic classes of the Bayesian

method (a), mean grain sizes in phi

unit of the model based method (b),

mean grain sizes in phi unit of the grab

samples (c), noise received by the

Medusa hydrophone (logarithmic

scale) (d), and the mean grain size in

phi unit using the Medusa method (e).
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part of the river, indicated both by the MBES model-based

results and the grab sample analysis. Also the Mz values

derived from the 40K concentrations indicate finer sediments

than on the remainder of the river. The Bayesian classifica-

tion indicates the presence of the first two classes in the

areas, corresponding to the lower backscatter strength val-

ues. It can also be seen that the noise levels measured with

the Medusa hydrophone are low, indicating a smooth sedi-

ment surface as expected for these fine-grained sediments.

For the area north of this small grain size region, the

Bayesian and model-based MBES results, along with the

Medusa noise measurements, reveal that the middle of the

river is mainly fine-grained, interspaced with areas contain-

ing coarser sediments. These results indicate coarser sedi-

ments also for the border of the river. The grab samples also

indicate coarser sediments compared to the southern area,

but their limited spatial sampling prevents derivation of

more details regarding the sediment distribution. Although

the 40K concentrations indicate coarser sediments compared

to the south, these results differ from the other methods as

the map based on the 40K concentration indicates areas with

smaller grain sizes in the west of the middle part of the river

which is not confirmed by any of the other methods.

In order to quantitatively assess the correspondence

between all measured parameters, Fig. 13 presents the cross

correlation matrix, where colors indicate the absolute values

of the correlation coefficients between the classifiers

obtained for all methods considered. All correlation coeffi-

cients, except those with the mean grain size from the grab

samples, are based on at least 5000 locations, resulting in

high confidence levels (100%) for the correlation coeffi-

cients. Due to the limited amount of grab samples, correla-

tion coefficients with the grab sample mean grain sizes are

subject to lower confidence levels. Only those correlation

coefficients with confidence levels exceeding 90% are pre-

sented in Fig. 13. (A confidence level of 90% means that

there is a 10% probability that this correlation coefficient

occurs fully by chance.)

From the correlations presented, it can be concluded

that when considering the Bayesian classes, the highest cor-

relation (�0.56) is found between classes and the mean grain

sizes as estimated from the model-based method. This lim-

ited correlation coefficient can be caused by a non-linear

relation between mean grain size and acoustic classes, but

can also be due to the fact that, in addition to sediment mean

grain size, also parameters such as the volume scattering pa-

rameter and the sediment roughness contribute to the meas-

ured backscatter strengths. This impedes the use of a linear

relation between acoustic classes and mean grain sizes, for

example to convert a map presenting acoustic classes to a

map of mean grain sizes. This is also demonstrated by the

limited correlation coefficient between the Bayesian classes

and the Mz values of the grab samples (�0.31).

From the Medusa measurements, the noise level is

found to have the highest correlation with the Bayesian

classes. The concentration of 137Cs shows the lowest correla-

tions. From Sec. IV C it is known that 137Cs is highly corre-

lated to the concentration of organic matter. Hence, the low

correlation between 137Cs and the acoustic classes is an indi-

cation that the presence of organic matter is not revealed by

the Bayesian approach. The limited correlation with 40K and
232Th with all other parameters, reflects the previous obser-

vation (based on Fig. 12) that in part of the area, the Medusa

mean grain sizes show a spatial pattern that is not conformed

by the other methods.

The substantial correlation of 0.43 between the noise

levels measured by the Medusa hydrophone and the model-

based parameter w2 results from the fact that both parameters

are representative for the sediment surface roughness.

VI. SUMMARY AND CONCLUSIONS

In this paper three methods for classification of sedi-

ments in the Dordtse Kil river in the Netherlands are pre-

sented. Two methods base the classification on MBES

backscatter data, whereas the third method bases the classifi-

cation on natural radioactivity. The first method uses the

MBES backscatter data collected at a certain angle to obtain

the number of acoustic classes and to discriminate between

them by applying the Bayes decision rule for multiple

hypotheses. The second method is model-based and matches

the full measured backscatter versus angle curve of the

MBES to the predicted backscatter curve using the model of

Ref. 19. The third method, Medusa, bases the classification

on measurements of gamma-ray radiation being emitted

from very low concentrations of a number of radionuclides

in the sediment, i.e., 137Cs, 40K, 238U, and 232Th.

The Bayesian method provides acoustic classes, and is

considered to be simple in principle and easy and fast to

implement. For the Dordtse Kil area, the Bayesian method

identified five acoustic classes. The model-based method

provided the sediment parameters mean grain size (Mz),

spectral strength of sediment surface roughness (w2) and

FIG. 13. Correlation coefficients (the colors indicate the absolute values)

between Bayesian classes, the parameters obtained from the model-based

method (Mz, w2, and r2), the parameters measured by the Medusa system

(noise, 40K concentration, 232Th concentration, and 137Cs concentration) and

the grab sample mean grain sizes. Only correlation coefficients with confi-

dence levels exceeding 90% are indicated.
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volume scattering parameter (r2). By comparing the classes

derived from the Bayesian method and the model-based

results, it is found that the model-based mean grain size

shows the highest correlation with the acoustic classes.

However, this correlation is limited to �0.56. This is an im-

portant result, as it indicates the limitations in the potential

of using only (grab sample-based) mean grain size for

assigning sediment parameters to the acoustic classes. The

latter is also illustrated by the limited correlation coefficient

(�0.31) between the acoustic classes and the mean grain

sizes obtained from grab samples.

The use of model-based methods would eliminate the

above-mentioned limitations in converting acoustic class to

sediment parameters. However, the model-based results indi-

cate an overestimation of the Mz values, i.e., too small mean

grain size values. This can be due to a still imperfect calibra-

tion of the measured backscatter values, caused by a limited

number of grab samples available for the calibration. In

addition, imperfect modeling of the backscatter curve can

play a role. These effects hamper the use of model-based

methods for sediment classification.

Analysis of the data taken by the Medusa system pro-

vided estimates of the mean grain size based on the concen-

trations of 40K and estimates for the silt fraction based on
40K and 232Th. Furthermore, concentrations of 137Cs were

used as a predictor for the fraction of organic matter. In addi-

tion, noise levels were measured by a hydrophone towed

over the sediments. The significant correlation between the

Medusa noise level and w2 indicate that the Medusa noise

levels contain information about the sediment roughness.

The low correlation between the 137Cs concentrations and

the Bayesian classification results indicates that backscatter

measurements do not reveal the presence of organic matter.

The Medusa system, however, can provide this information

based on the 137Cs measurements.
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