

Detector development

m e d u s a

the measurement

Seligman, H. (1992). Airborne gamma ray spectrometer surveying, technical reports series no. 323: International Atomic Energy Agency, Vienna, 1991. 97 pp. Austrian Schillings 340.

m e d u s a

Analysis methods for small detectors

Two competing processes at play: 1. Increase in footprint with an increase in source-detector separation 2. Increased attenuation in the ground and air Both processes have been studied and methods have been developed for the case of airborne data collection, however this method breaks down in the range of 5-40 meter height in which ¹IAEA, Nicolet, J. P., & Erdi-Krausz, G. (2003). Guidelines for radioelement mapping using gamma ray spectrometry data. International Atomic Energy Agency, (5), 179.

*the drone operates*¹*.*

Case study I: precision farming

Ground

- MS-2000, 2 L CsI crystal
- Walking survey
- Elevation 0.8 m
- Measurement frequency of 1 Hz.
- Bare soil

Drone

- MS-1000, 1 L Nal crystal
- Drone survey
- Elevation 15 m
- Measurement frequency of 1 Hz.
- Vegetation started to grow

- calibration
- validation

Case study I: precision farming

Drone • MS-1000, 1 L Nal crystal • Elevation 15 m • 10-15 km/h flying speed • Spacing: 10m. • Measurement frequency of 1 Hz. • Rocky terrain 11

Drone
MS-1000, 1 L Nal crystal
Elevation 15 m
10-15 km/h flying speed
Spacing: 10m.
Measurement frequency of 1 Hz.
Rocky terrain
12
12

m e d u s a

Conclusions

- Airborne gamma-ray spectrometry as tools to 'fingerprint' soils
- Not a replacement but an extension to the current analysis toolbox.
- Small scale applications
 - Precision agriculture
 - Site remediation at legacy mine tailing locations
 - Pollution mapping
- Autonomous realtime system enables new applications.
 - Direct feedback to improve the yield of the survey
 - Realtime source-tracking
- Outlook
 - Geometric corrections and improved analysis methods
 - Even smaller detectors (350 ml Nal)

