Validation of a new soil bulk density sensor

Regieorgaan

*

AERES UNIVERSITY OF APPLIED SCIENCES

Karin Pepers, Ronald Koomans, Fenny Van Egmond, Gijs Staats, Kees Teuling and Gera Van Os

Bulk density is key to

>Assess soil compaction and its effects on soil health

- > Understand soil water infiltration and retention characteristics
- > Assess and calculate soil (organic) carbon stocks

concentration x mass/volume (g/kg) = content

bulk density

Causes of subsoil compaction

High wheel loads in early spring (wet soil)

High risk for subsoil compaction in the Netherlands.

EU Soil Observatory, https://esdac.jrc.ec.europa.eu/esdacviewer/euso-dashboard/

Detrimental consequences of subsoil compactions

Nat Nederland

- Reduced water infiltration and retention
 Increased emissions to surface water
 Reduced rooting and nutrient efficiency
 - Yield reduction

Farmers dig trenches for extra drainage.

Een boer in Beneden-Leeuwen graaft maandag geulen om het water af te voeren. De grond waarop hij staat is al verloren gegaan.

Foto Marcel van den Bergh / de Volkskrant

Awareness is essential for changes in soil management

Impediments to changes:

- Farmers are often unaware of the compaction in their fields
- Gradual build-up of compaction over the years
- Flooding after rainfall and reduced crop development are *non*-specific indicators

Therefore, it is important to measure subsoil compaction, but is not easy to quantify.

Conventional methods for diagnosing subsoil compaction

- Profile pit assessment:
 - Visual estimate
 - Qualitative, subjective
- Penetrometer:
 - Penetration resistance
 - > Highly moisture dependent
- Kopecky rings:
 - Dry bulk density
 - > Labour intensive, lab facility,

time consuming (up to 5 h/profile)

RhoC-sensor for in situ dry bulk density measurements

> Dry bulk density profile 0-100 cm deep in less than 10 minutes

Validation in two soil types: loam and sand

RhoC-sensor for *in situ* dry bulk density measurements

RhoC-sensor measurement locations

Measurement / sampling:

- 2 fields: loam and sand
- 10 soil pits per field
- Per 10 cm soil layer:
 - 3 x RhoC-sensor
 - 3 x Kopecky rings

Field bulk density correlation

10 cm

Loam

Sand

 \succ Outliers are mainly measurements of 0-10 cm depth.

This is probably due to very loosely packed soil.

These data are excluded in

the correlation analyses.

Mean field bulk density

- Strong correlation for both soil types.
- Error bars in two directions
- Errors reflect soil
 heterogenity between the
 3 profiles + uncertainty in
 measuring methods

Mean dry bulk density correlation

Correlation analyses Kopecky ring method and RhoC method

Conclusions

Validation results show good correlation between RhoC sensor and the reference ring method for dry soil bulk density measurements.

Method	Average RMSE bulk density	Relative uncertainty	Measurement time	
			per location	per sample
Kopecky rings	0.14 g/cm ³	9%	~ 5 hours (incl. digging and lab)	~ 1 hour (incl. digging and lab)
RhoC sensor	0.22 g/cm ³	15%	< 10 minutes	< 3 minutes

This provides the much-needed possibility for large scale assessment of soil bulk density in relation to soil health, water management, carbon stock calculations and crop production.

Many thanks to:

Ronald Koomans

Fenny van Egmond

Gijs Staats

Kees Teuling

Gera van Os

Contact details: Karin Pepers E <u>k.pepers@aeres.nl</u>